Ukuran Penyebaran Data

Perhatikanlah tabel berikut

\color{blue}\begin{array}{|c|l|l|}\hline \textrm{No}&\qquad\qquad\quad\textrm{Istilah}&\qquad\qquad\textrm{Formula}\\\hline 1&\textrm{Jangkauan/\textit{range} (J)}&x_{maksimum}-x_{minimum}\\\hline 2&\textrm{Jangkauan kuartil/hamparan(H)}&Q_{3}-Q_{1}\\\hline 3.&\textrm{Simpangan kuartil}\: \left ( \textrm{Q}_{d} \right )\: \: atau&\\ &\textrm{Jangkauan semi antarkuartil}&\displaystyle \frac{1}{2}\left ( Q_{3}-Q_{1} \right )\\\hline 4&\textrm{Simpangan rata-rata (SR)}&\begin{cases} SR&=\displaystyle \frac{\sum_{i=1}^{n}\left | x_{i}-\bar{x} \right |}{n} \\ &atau \\ SR&=\displaystyle \frac{\sum_{i=1}^{n}f_{i}\left | x_{i}-\bar{x} \right |}{\sum_{i=1}^{n}f_{i}} \end{cases}\\\hline 5&\textrm{Ragam/Varians}\: \left ( \textrm{S}^{2} \right )&\begin{cases} S^{2}& =\displaystyle \frac{\sum_{i=1}^{n}\left ( x_{i}-\bar{x} \right )^{2}}{n} \\ & atau \\ S^{2}& =\displaystyle \frac{\sum_{i=1}^{n}f_{i}\left ( x_{i}-\bar{x} \right )^{2}}{\sum_{i=1}^{n}f_{i}} \end{cases}\\\hline 6&\textrm{Simpangan baku atau}&\begin{matrix} S=\sqrt{S^{2}}=\sqrt{\displaystyle \frac{\sum_{i=1}^{n}\left ( x_{i}-\bar{x} \right )^{2}}{n}}\\ atau \end{matrix} \\ &\textrm{Standar deviasi}&S=S^{2}=\sqrt{\displaystyle \frac{\sum_{i=1}^{n}f_{i}\left ( x_{i}-\bar{x} \right )^{2}}{\sum_{i=1}^{n}f_{i}}}\\\hline \end{array}.

\colorbox{yellow}{\LARGE{\fbox{CONTOH SOAL}}}.

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *