Lanjutan 2 Contoh Soal Persiapan Semester Gasal 2019/2020 Kelas XII Peminatan

\color{blue}\begin{array}{ll}\\ \fbox{6}.&\textbf{(USM UGM Mat IPA)}\\ &\textrm{Nilai}\: \: \underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \left ( \sqrt[3]{x^{3}-2x^{2}}-x-1 \right )=....\\ &\begin{array}{lll}\\ \textrm{A}.\quad \displaystyle \frac{5}{3}&&\textrm{D}.\quad -\displaystyle \frac{2}{3}\\\\ \textrm{B}.\quad \displaystyle \frac{2}{3}\quad &\textrm{C}.\quad -\displaystyle \frac{1}{3}\quad &\textrm{E}.\quad -\displaystyle \frac{5}{3}\end{array}\\\\ &\textrm{Jawab}:\textbf{E} \end{array}..

\begin{aligned}.\qquad \: \, \underset{x\rightarrow \infty }{\textrm{Lim}}\: &\: \displaystyle \left ( \sqrt[3]{x^{3}-2x^{2}}-x-1 \right )\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \left ( \sqrt[3]{x^{3}-2x^{2}}-\sqrt[3]{\left ( x+1 \right )^{3}} \right )\\ &\: \: \: \textrm{ingat bentuk}\: \: a-b=\left ( \sqrt[3]{a}-\sqrt[3]{b} \right )\left ( \sqrt[3]{a^{2}}+\sqrt[3]{ab}+\sqrt[3]{b^{2}} \right )\\ &\: \: \: \textrm{dan untuk}\: \: \begin{cases} a & =\left ( x^{3}-2x^{2} \right ) \\ & \\ b & = \left ( x+1 \right )^{3} \end{cases}\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{\left ( \sqrt[3]{a}-\sqrt[3]{b} \right )\left ( \sqrt[3]{a^{2}}+\sqrt[3]{ab}+\sqrt[3]{b^{2}} \right )}{\sqrt[3]{a^{2}}+\sqrt[3]{ab}+\sqrt[3]{b^{2}}}\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{a-b}{\sqrt[3]{a^{2}}+\sqrt[3]{ab}+\sqrt[3]{b^{2}}}\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{\left ( x^{3}-2x^{2} \right )-\left ( x+1 \right )^{3}}{\sqrt[3]{\left ( x^{3}-2x^{2} \right )^{2}}+\sqrt[3]{\left ( x^{3}-2x^{2} \right )\left ( x+1 \right )^{3}}+\sqrt[3]{\left ( \left ( x+1 \right )^{3} \right )^{2}}}\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{\left ( x^{3}-2x^{2} \right )-\left ( x^{3}+3x^{2}+3x+1 \right )}{\left ( x^{3}-2x^{2} \right )^{\frac{2}{3}}+\left ( x^{6}+... \right )^{\frac{1}{3}}+\left ( x+1 \right )^{\frac{6}{3}}}\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{-5x^{2}+...}{\left ( x^{3}-2x^{2} \right )^{\frac{2}{3}}+\left ( x^{6}+... \right )^{\frac{1}{3}}+\left ( x+1 \right )^{\frac{6}{3}}}\\ &=\displaystyle \frac{-5}{1+1+1}\\ &=-\displaystyle \frac{5}{3} \end{aligned}
\begin{array}{ll}\\ \fbox{7}.&\textrm{Nilai}\: \: \underset{k\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \left ( \frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+\frac{1}{4\times 5}+\cdots +\frac{1}{k\times (k+1)} \right )=....\\ &\begin{array}{lll}\\ \textrm{A}.\quad \displaystyle 1&&\textrm{D}.\quad \displaystyle \frac{5}{2}\\\\ \textrm{B}.\quad \displaystyle \frac{3}{2}\quad &\textrm{C}.\quad \displaystyle 2\quad &\textrm{E}.\quad \displaystyle \infty \end{array}\\\\ &\textrm{Jawab}:\textbf{A}\\ & \begin{aligned}\underset{k\rightarrow \infty }{\textrm{Lim}}\: \: &\displaystyle \left ( \frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+\cdots +\frac{1}{k\times (k+1)} \right )\\ &=\underset{k\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \left ( \left (1-\frac{1}{2} \right )+\left (\frac{1}{2}-\frac{1}{3} \right )+\left (\frac{1}{3}-\frac{1}{4} \right )+\cdots +\left (\frac{1}{k}-\frac{1}{k+1} \right )\right )\\ &=\underset{k\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \left ( 1-\frac{1}{k+1} \right )\\ &=\displaystyle \left ( 1-\frac{1}{\infty +1} \right )\\ &=\displaystyle 1-\frac{1}{\infty }\\ &=1-0\\ &=1 \end{aligned} \end{array}
\begin{array}{ll}\\ \fbox{8}.&\textrm{Nilai}\: \: \underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \sqrt{4x^{2}+3x}-\sqrt{4x^{2}-5x}=....\\ &\begin{array}{lll}\\ \textrm{A}.\quad \displaystyle 1&&\textrm{D}.\quad \displaystyle 4\\\\ \textrm{B}.\quad \displaystyle 1\quad &\textrm{C}.\quad \displaystyle 2\quad &\textrm{E}.\quad \displaystyle 8 \end{array}\\\\ &\textrm{Jawab}:\textbf{C}\\ & \begin{aligned}\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \sqrt{4x^{2}+3x}-\sqrt{4x^{2}-5x}&=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \sqrt{4x^{2}+3x}-\sqrt{4x^{2}-5x}\times \displaystyle \frac{\sqrt{4x^{2}+3x}+\sqrt{4x^{2}-5x}}{\sqrt{4x^{2}+3x}+\sqrt{4x^{2}-5x}}\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{4x^{2}+3x-(4x^{2}-5x)}{\sqrt{4x^{2}+3x}+\sqrt{4x^{2}-5x}}\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{3x+5x}{\sqrt{4x^{2}+3x}+\sqrt{4x^{2}-5x}}\times \displaystyle \frac{\left ( \displaystyle \frac{1}{x} \right )}{\left ( \sqrt{\displaystyle \frac{1}{x^{2}}} \right )}\\ &=\displaystyle \frac{3+5}{\sqrt{4}+\sqrt{4}}\\ &=\displaystyle \frac{8}{4}\\ &=2 \end{aligned} \end{array}
\begin{array}{ll}\\ \fbox{9}.&\textrm{Nilai}\: \: \underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{\sqrt{4x^{2}-2x}-\sqrt{x^{2}+1}}{\sqrt{9x^{2}-1}}=....\\ &\begin{array}{lll}\\ \textrm{A}.\quad \displaystyle \frac{1}{3}&&\textrm{D}.\quad \displaystyle 1\\\\ \textrm{B}.\quad \displaystyle \frac{4}{9}\quad &\textrm{C}.\quad \displaystyle \frac{1}{2}\quad &\textrm{E}.\quad \displaystyle \frac{3}{2} \end{array}\\\\ &\textrm{Jawab}:\textbf{A}\\ &\begin{aligned}\underset{x\rightarrow \infty }{\textrm{Lim}}\: &\: \displaystyle \frac{\sqrt{4x^{2}-2x}-\sqrt{x^{2}+1}}{\sqrt{9x^{2}-1}}\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{\sqrt{4x^{2}-2x}-\sqrt{x^{2}+1}}{\sqrt{9x^{2}-1}}\times \displaystyle \frac{\left ( \sqrt{\displaystyle \frac{1}{x^{2}}} \right )}{\left ( \sqrt{\displaystyle \frac{1}{x^{2}}} \right )}\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{\sqrt{4-\frac{2}{x}}-\sqrt{1+\frac{1}{x^{2}}}}{\sqrt{9-\frac{1}{x^{2}}}}\\ &=\underset{x\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle \frac{\sqrt{4-0}-\sqrt{1+0}}{\sqrt{9-0}}\\ &=\displaystyle \frac{2-1}{3}\\ &=\displaystyle \frac{1}{3} \end{aligned} \end{array}

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *